

1/6

The Platform-Blending Concept
When In Rome, Do as the Romans Do…

© 2000 Tarak Modi, All rights reserved.
Precision Choice is a trademark of Online Insight, Inc.
All other product or company names are the properties of their respective owners.

The information contained in this document represents the current view of Tarak Modi on the content discussed as of the
date of publication, and is for information purposes only.

TARAK MODI MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, IN THIS DOCUMENT.

Abstract

Creating software in Java and hence making it platform independent1 is only half the battle. To
make a software application truly platform independent, the application must behave as any other
platform specific application would behave on that platform. Otherwise, the platform independent
application sticks out like a “sore thumb”. Thus platform independence is only the first step to a
larger, ultimate, and more fulfilling concept of “platform-blending”.

This article describes the process of transforming the Precision ChoiceTM Core Engine
components into Windows NT services that allowed Online Insight to achieve platform blending
on Windows NT. Although, this article uses Windows NT as an example platform to illustrate the
platform-blending concept, the ideas presented within are equally valid on any other platform.

The Need for Platform Blending

Java has gained widespread acceptance as a language for creating platform independent
software applications. However, even JavaSoft, the creator of Java realized that platform
independence, although attractive to software development companies, is not enough to compel
customers to buy such software. Hence, the Java Abstract Windowing Toolkit (AWT), which
provides user interface capability to Java programs, was quickly followed by the Java Foundation
Class (JFC) library for creating user interfaces. Unlike the AWT, the JFC library allows the look
and feel of the user interface to be adjusted to the platform on which the application is being run.
A variety of look and feel options such as Microsoft Windows, X-Motif, etc. are available via the
JFC. However, look and feel is just one component of the platform-blending concept. Platform
blending includes every aspect of the software application on a specific platform, from look and
feel to installation, to startup and shutdown.

Following software industry best practices, Online Insight has utilized a component driven
approach for developing Precision Choice. At the highest level these components appear as
layers in the software, which are namely the User Interface, the Presentation Services, and the
Core Engine layer. Each layer itself is composed of components as well. For example, the Core
Engine layer is composed of an Adaptor, Command Processor(s) and Datastore(s) components.

1 Software written in Java needs to be thoroughly tested on each platform that is claimed to be supported.

The Platform Blending Concept

2/6

Each one of these is further composed of components. This approach provides Online Insight
maximum flexibility in keeping up with rapidly advancing technology and customer needs.

A service on Windows NT is an executable object that is installed in a registry database
maintained by the Service Control Manager (SCM), which is an integral part of Windows NT. The
executable object associated with a service can be started at system boot time by a boot program
or by the system itself, or it can be started on demand by the SCM. Windows NT has two types of
services, namely a Win32 service and a driver service. A Win32 service is a service that
conforms to the interface rules of the SCM. This enables the SCM to start the service at system
startup or on demand and enables communication between the service and service control
programs. A Win32 service can execute in its own process, or it can share a process with other
Win32 services. A driver service is a service that follows the device driver protocols for Windows
NT rather than using the SCM interface.

Windows NT services allow applications that provide a “service” to other programs/users to start-
up during system boot-up without the need for a user to log on to the machine or manually start
the application. Services are needed to perform user-independent tasks such as directory
replication, process monitoring, or services to other machines on a network, such as support for
the Internet HTTP protocol. All major applications on Windows NT that provide such “services”
are available as a Win32 service. Thus for Precision Choice to be truly accepted by Windows NT
users the logical course of action was to make the Core Engine components (the “service”
providers) available as Win32 services.

The Platform Blending Concept

3/6

The Approach

Online Insight could have re-written all the Core Engine Components in C++ in the form of Win32
services. However, this is not what platform blending is about because by doing this the software
application has just lost its platform independence, which is an integral part of the platform-
blending concept. In addition, this would not have been the most efficient/reusable way to
accomplish the task. Figure 1 shows the architecture used

Service Control Manager
Service Control Manager

Generic Service
(Installed)

Controller
Controller

Java Application
to run as an NT

Service

Service
Callback

Command Socket

Application
Specific

Communication

Figure 1: The Basic Architecture

The Platform Blending Concept

4/6

The architecture has introduced three new components, which wrap2 the Java application that is
to be made available as an NT Service. Only the Generic Service component needs to be
installed. The components are described below:

1. The Generic Service
The Generic Service is a general purpose NT Service written to conform to the NT Win32 service
protocol. This component is written using C++. Each Java application that is to be made available
as a Win32 service must have its own copy of this Generic Service component, which is simply a
matter of copying the executable and renaming it to the name of the service desired. For
example, to install a service named “AcmeService”, copy and rename “GenericService.exe” to
“AcmeService.exe”.

To install this service, from a command prompt type the following:

AcmeService –i <controller.properties> <communication port> [JVM parameters]
[dependencies…
]

where,

-i:
informs the service to install itself

<controller.properties>:
The absolute path of the properties file for the Controller component (See the Controller for
details)

<communication port>:
The port used by the service to communicate with the Controller. This port must match the port
specified in the controller properties file.

[JVM parameters]:
Arguments for configuring the Java Virtual Machine (JVM). This is an optional parameter. If there
are multiple parameters enclose the whole list in double quotes.

[dependencies…]:
A list of space separated services (their names), all of which must start before this service starts.
Specifying these services will ensure that these services start before the installed service. This is
another optional parameter.

The service can be uninstalled as follows:

 AcmeService –u

where,

-u:
informs the service to uninstall itself.

The version of the service itself and seeing if the service is installed can be done as follows
 AcmeService –v

where,

2 Warp or decorate, See the “decorator” design pattern for details about this concept.

The Platform Blending Concept

5/6

-v:
informs the service print the above information about itself.

The Generic service will start up the Controller and pass the Controller the properties file
specified as the <controller.properties> parameter during the install. Thereafter, the Generic
Service will then send commands to the Controller via the communications socket specified
during the install. For each discrete command, the Generic Service must open up a new socket
connection to the Controller. This is because the Controller closes the socket connection after
each command.3 The communication protocol between the Generic Service and the Controller is
extremely simple and is “home-grown”. It essentially consists of a byte stream that propagates an
action (such as “start”, “stop”, “pause”, and “resume”) initiated on the service from an application
such as the SCM to the Controller component so that the Java application may respond
appropriately (See the Service Callback component for details).

2. The Controller
The Controller is a Java component that is responsible for starting up the Java Application that is
to be made available as a Win32 service. This application is specified in the Properties file for the
Controller (which is passed to the Controller by the Generic Service and corresponds to the
<controller.properties> parameter during the service install). The Controller will pass this
application a properties file that is specified inside the Controller properties file. This properties
file informs the application about parameters specific to itself. The Controller also opens up a
socket on the port specified in the Controller properties file and will listen for commands from the
Generic Service on this socket. Once it receives a command, it will call the appropriate method
on the Service Callback class and close the socket connection to the Generic Server4.

3. The Service Callback
This is a Java class that must implement the com.onlineinsight.intercomponent.windows.Service
interface. This interface contains methods, which are called by the Controller in response to
commands sent by the Generic Service via the SCM, or any other means, which correspond to
commands to “pause”, “resume”, and “stop” the service. Since the action taken for each Java
application in response to these commands is application specific, this callback class is required
to be provided by the application provider. However, if no special action is required for the
application in response to these commands, the application provider may use the “null” callback
class provided (which is com.onlineinsight.intercomponent.windows.NullCallback). This has been
done in the case of the CommandProcessor component of the Core Engine, which does not have
a special command response requirement. However, the Adaptor and Datastore components of
the Core Engine do have special (specific) requirements and hence a callback class specific to
each was created. Each method of the callback class receives the properties that were passed to
the Java application when it was started and also the arguments received by the Controller when
the Generic Service started it. Using these the callback class can communicate with the Java
Application in the appropriate (application specific) way.

3 Sort of like HTTP, which indicates a stateless, connectionless protocol.
4 This refers to the client connection. The Controller never closes the communication socket port.

The Platform Blending Concept

6/6

The Service Choreography

Figure 2 shows a sequence diagram highlighting the major flow of actions in the architecture.

Figure 2: The Basic Flow

Conclusion

Platform Independence is a very interesting and useful concept, which software professionals
have strived to achieve since the dawn of computing. Java takes us a long way in achieving this.
However, as discussed in this article, platform independence yields maximum benefit to its
creator when it is taken a step further to what this article has described as “platform blending”.
Platform blending and platform independence are not mutually exclusive. Rather, platform
independence is an essential subset of platform blending. Using proper software design
principles5, platform independent applications can easily be transformed into platform blended
applications without any change to the application itself or losing the platform independence of
the application. Such platform-blended applications greatly enhance the value derived by
customers in all interactions with the application. Greater value means a happier customer, which
is ultimately what business (and software development) is all about.

5 Such as Design Patterns.

