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Introduction to PCI

In today’s operating environments, it is absolutely necessary that large blocks of data be transferred
expeditiously. Examples of such subsystems include Graphics video adapters, Full motion video adapters,
SCSI host bus adapters, and FDDI network adapters.

Graphics Interface Performance Requirements
The Windows, OS/2, Sun OpenWin and X-Windows user interfaces require extremely fast updates of the
graphics image in order to efficiently move, resize and update multiple windows. Normally, the screen
image is stored in video RAM, which means that the processor(s) must be able to move/update large
blocks of  data within video memory very fast.

SCSI Performance Requirements
The SCSI interface is used to move large blocks of data between target I/O devices and system memory.
Mass storage devices such as hard disk drives, CD-ROM drives and tape backup systems typically reside
on the SCSI bus. The time required to read/write to these devices over the bus imposes a direct delay on
the end user.

Network Adapter Performance Requirements
When a network adapter is used to transfer entire files of information to/from a server, the rate at which
this data can be transferred directly affects the system performance.

Expansion Bus Performance Constraints

Majority of the subsystems reside on a PC’s expansion bus. Depending on the machine design, this may be
a ISA, EISA, or Micro Channel expansion bus. However, all three expansion buses suffer from inadequate
data rate for today’s applications (as seen later). In some cases, subsystems such as the video adapter have
been integrated on the system board giving an illusion (false), that they do not reside on the expansion
bus. However, this is not the case. Most of these subsystems reside on a buffered version of the expansion
bus called (eXtension to the expansion bus). It is also sometimes called the utility bus. Thus the
subsystems are once again bound by the same mediocre data transfer rates.

Expansion Bus Transfer Rate Limitations

ISA Expansion bus
All transfers performed over the ISA bus are synchronized to a 8.33 MHz bus clock signal (BCLK). It
takes a minimum of two bus cycles to perform a data transfer (assuming a zero wait state). This equals to
4.165 million transfers per second. Since the data path is only 16 bits wide, a maximum of two bytes can
be transferred during each transmission. Thus the theoretical maximum data transfer rate is 8.33 Mbytes
per second.

EISA Expansion Bus
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Like the ISA bus, All transfers performed over the ISA bus are synchronized to a 8.33 MHz bus clock
signal (BCLK). It takes a minimum of one clock cycle to perform a data transfer (assuming that EISA
burst mode transfer is supported). This equates to 8.33 million transfers per second. Since the data path is
32 bits wide, a maximum of four bytes may be transferred during each transaction. Thus the theoretical
maximum data transfer rate is 33 Mbytes per second.

Micro Channel Architecture Expansion Bus
Presently, the maximum achievable transfer rate on this bus is 40 Mbytes per second (using the 32-bit
streaming procedure). This is based o a 10 MHz bus speed with one data transfer taking place at each
cycle. Up to 80 and 160 Mbytes per second data transfer rates are possible with the 64-bit streaming and
the enhanced 64-bit streaming data procedures.

A Realistic Situation

Consider three PCs linked via a telecommunications network. Each of the three units has the capability to
simultaneously merge multiple graphics and video sources onto the screen in real-time. A large portion of
the screen is devoted to display the document under discussion. To emulate a actual face to face
discussion, the system must be capable of simulating flipping through the pages at the rate of 10 frames
per second. Consider the image resolution of 1280 X 1024 pixels, and a color resolution of 16 million
colors ( three bytes per pixel). Thus the amount of video memory equates to 3.93216 Mbytes per image.
For an update of 10 pages per second the memory update rate would have to be at least 39.3216 Mbytes
per second

The video preview portion of the screen is used to display a real-time video image of the video source local
to the unit. Let the image resolution be 320 X 240 pixels, and the color resolution be 256 colors (one byte
per pixel). The image must be updated at a rate of 30 frames per second equating to a data transfer rate of
2.3  (320 multiplied by 240 multiplied by 30) Mbytes per second.

Each of the two remote video screen areas displays a full motion video image, one from each of the other
participant. These images have a resolution of 640 X 480 pixels, and a color resolution of 256 colors.
Once again, the image must be updated at a rate of 30 frames per second equating to a data transfer rate of
9.2  (620 multiplied by 480 multiplied by 30) Mbytes per second.

Each of the three video cameras would transfer data at 200 Kbytes per second.

Thus the total data transfer rate required for the system equates to 60.516 (39.3216 + 2.3 + 2*9.2 + .2*3)
Mbytes per second.

The Practical Solutions

Local Bus Concept

To maximize the throughput when performing updates to video graphics memory, many PC vendors have
moved the video graphics adapter from the slow expansion bus to the processor’s local bus. The video
adapter is redesigned to minimize/eliminate the number of wait states inserted into each bus cycle when
the processor accesses the video memory and I/O registers. The adapter also incorporates a local
processor.

There are three basic methods for connecting a device on the microprocessor’s local bus

Direct Connect Approach
As the name indicates this approach is very straightforward: The device is connected directly on the local
bus.
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This method imposes the following design constraints :
• Since the device is connected directly to the processor’s local bus, it must be redesigned in order to be

used with next generation processors (if the bus protocol or structure is changed)
• Due to the extra loading placed on the local bus, no more than one local bus device may be added.
• Because the local bus is running at a high frequency, the design of the local bus device’s interface is

difficult.
• The Intel Overdrive processor may cause the device to exhibit aberrant behavior.
• The processor is not permitted to perform transfers with one device while the local bus device is

involved in a transfer with another device.

Buffered Approach
The second approach that can be used to connect a local bus device to the processor’s local bus is the
buffered approach. The bus buffer receives all the local bus signals, thereby permitting fanout to more
than one local bus device. Since the devices are electrically isolated from the local bus, only one load (that
of the buffer) appears on the local bus. This is the only real advantage over the Direct Connect approach.
A major  disadvantage of this approach is that the processor’s local bus and the buffered local bus are
essentially one bus. Thus simultaneous access by multiple bus masters is not possible.

Workstation Approach
This approach is used in many workstation architectures to achieve high performance. The processor’s L2
cache controller is combined with a bridge that provides the interface between the processor, main
memory and the high speed I/O bus. The devices that reside on the I/O bus may consist only of target
devices or a mixture of targets and intelligent peripheral adapters with bus master capability. Via the
specially designed bridge, either the processor (through the L2 cache) or a bus master on the I/O bus can
access the main memory. Optimally, the processor can continue to fetch information from its L1 or L2
cache, while the cache controller provides a bus master on the I/O bus with access to the main memory.
Another very distinct advantage of this approach is that it renders the I/O bus device interface
independent of the processor bus. Processor upgrades can be easily implemented without impacting the
I/O bus design. Only the cache bridge would require redesign.

The Local Buses

VESA VL Bus Solution
The Video Electronics Standards Association  (VESA), an association of companies involved in the
design and manufacturing of video graphics adapters commissioned the development of a local bus
standard. The local bus specification developed was called the VL (VESA Local) bus. The direct connect
interface approach is referred to as the VL type “A” bus, while the buffered version is referred to as the
VL type “B” bus. In both cases the bus is modeled on the 486 bus.

PCI Bus Solution
Intel defined the PCI bus to ensure that the marketplace would not become crowded with various
permutations of local bus architectures implemented in a short sighted fashion. The first version became
available in June of 1992. Intel made the decision not to back the VESA VL standard because the
emerging standard did not take a long term approach to solving the problems presented at the time, and in
the future. In addition VL has a very limited support for supporting burst transfers.

PCI stands for Peripheral Component Interconnect. The PCI bus can be populated with adapters requiring
fast accesses to each other and system memory with speeds approaching that of the processor’s native bus
speed. All reads and writes over the PCI are burst transfers.
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The PCI design allows the system design to be centered around two of the three approaches discussed
earlier : the buffered approach, and the workstation approach. The workstation approach is the preferred
of the two due to its flexibility and performance advantages.

The PCI Bus Operation Principles

Burst Transfers
A burst transfer is one consisting of a single address phase followed by two or more data phases. The bus
master only has to arbitrate for bus ownership one time. The start address and the transaction type are
issued during the address phase. The target device latches the start address into an address counter and is
responsible for incrementing the address from data phase to data phase.

In the 486, EISA, and the micro channel environments, the ability to perform burst transfers is the
product of negotiation between the bus master and the target device. If either of them do not support burst
mode transfers, the packet can only be transferred utilizing a series of separate packets.
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PCI Bus
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   Expansion
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   Adapter

     SCSI
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The PCI Bus : Basic Relationship of the PCI, Expansion and Memory
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PCI data transfers can be accomplished using burst transfers. Many PCI bus masters and target devices are
designed to support burst mode. It should be noted that a PCI target may be designed such that it can only
handle single data phase transactions. When a bus master attempts to perform a burst mode transfer, the
target terminates the connection at the completion of the first data phase each time, which forces the bus
master to re-arbitrate for the bus with each next item. This would seriously impact performance, but may
be necessary in some situations.

Assuming that neither the master nor the target inserts wait states, a data object may be transferred on the
rising edge of each PCI clock cycle. At a PCI bus clock frequency of 33 MHz, a transfer rate of  132
Mbytes per second may be achieved. This may be doubled in a 64-bit implementation.

PCI Bus Clock
All actions on the PCI bus are synchronized to the PCI clock signal (CLK). The frequency of the CLK
may be anywhere from 0 to 33 MHz. Revision 2.1 defines PCI operation up to 66 MHz. All PCI
operations consist of an address phase followed by one or more data phases. The exception is where the
initiator uses 64-bit addressing delivered  in two address phases. An address phase is one PCI CLK in
duration. The number of data phases depends on how many data transfers are to take place during the
over all burst transfer. Each data phase has a minimum duration of one PCI CLK. Each wait state inserted
costs an additional PCI CLK cycle.

Address Phase
Every PCI transaction starts off with an address phase, which is one PCI CLK in duration. During the
address phase, the initiator identifies the target device and the type of transaction. The target device is
identified by driving a start address within its assigned range onto the PCI address/data bus. At the same
time the initiator identifies the type of transaction by driving the command type onto the PCI
command/Byte enable bus. The initiator asserts the FRAME# signal to indicate the presence of a valid
start address and transaction type on the bus. The PCI target device latches this address and decodes it. By
decoding the address and the transaction type, the target device can determine if it is being addressed and
the type of transaction in progress.

Claiming the Transaction
Once the target has determined that it is being addressed, it must claim the transaction by asserting
DEVSEL#. If the initiator does not sample the DEVSEL# signal within the predetermined amount of time
it aborts the transaction.

Data Phase(s)
The data phase is the period during which a data object is transferred between the initiator and the target.
The number of data bytes to be transferred during a data phase is determined by the number of
Command/Byte Enable signals that are asserted by the initiator during the data phase.
Both the initiator and the target must indicate readiness to complete a data phase, or else the data phase is
extended by one wait (PCI CLK) state. The PCI bus defines ready lines used by the initiator and the target
as IRDY# and TRDY#. Once the initiator asserts the IRDY# signal, the FRAME# signal becomes de-
asserted. This indicates the last data transfer and the PCI bus is returned to idle state.

Reflected Wave Switching

Consider the case where a signal trace is fed by a driver and is attached to a number of device inputs
distributed along the signal trace. In the past, the system designer would ignore the electrical
characteristics of the trace itself, and only factor in the electrical characteristics of the devices connected
to the trace. This was acceptable in the low frequency (1 MHz) range, however in the high frequency
environments such as the PCI, traces must switch states at the rate of 25 MHz and up. At these rates, each
trace acts like a transmission line and the electrical characteristics of the trace must be factored in the
equation.



CPE 602 : Study of Advanced Bus Architecture

6

A transmission line presents an impedance to the driver attempting to drive the voltage change onto the
trace, and also imposes a time delay. The trace impedance typically ranges from 50 to 110 ohms

Unlike many buses, the PCI bus does not incorporate termination resistors at the physical end of the bus to
absorb voltage changes and prevent the wave front caused by a voltage change from being reflected back
down the bus. Rather, PCI uses reflections to its advantage.

The PCI bus is unterminated and uses wavefront reflection to an advantage. A carefully selected ,
relatively weak output driver is used to drive the signal line halfway to the desired logic state. As an
example, the driver would only have to drive the signal from 0 to 1.5 V. As the wavefront passes each
device input along the trace, the voltage change is insufficient to register as a logic high. However when
the wavefront arrives at the unterminated end of the bus, it is reflected back and doubled to three volts.
Upon passing each device input a valid logic “1” is registered. The wavefront is now absorbed by the low
impedance inside the driver. This method cuts the driver size and the surge current in half. In many
systems the correct operation of the PCI depends on diodes embedded within devices to limit reflections
and to successfully meet the specified propagation delay. If a system has long trace runs without
connection to a PCI component (e.g. A series of unpopulated connectors), it may be necessary to add diode
terminators at the end of the bus to ensure signal quality.

The PCI specification states that devices must only sample their inputs on the rising edge of the PCI clock
signal. The physical layout of the PCI bus traces are very important to ensure that signal propagation is
within assigned limits. When a driver asserts/se-asserts a signal, the wavefront must propagate to the
physical end of the bus, reflect back and make the full passage back down the bus before the signal is
sampled on the next rising edge of the PCI CLK signal.

PCI Bus Signals

A PCI device can act as an initiator or as a target device or both. The PCI bus signals may be divided into
the following functional groups :

•      System Signals
•      Address/Data Bus Signals
•      Transaction Control Signals
•      Arbitration Signals
•      Interrupt Request Signals
•      Error Reporting Signals
• Cache Support Signals
• Other Signals

System Signals

• PCI Clock Signal (CLK)
The CLK signal is an input to all devices residing on the PCI bus. It provides timing for all transactions,
including bus arbitration. All inputs to the PCI devices are sampled on the rising edge of the CLK signal.
The state of all input signals are “don’t care” at all other times. The CLK signal my be anywhere from 0
to 33  MHz. It may be varied at any time provided :

• The clock edges remain clean
• The minimum clock high and low times are not violated
• There are no bus requests outstanding
• LOCK# is not asserted
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• CLKRUN# Signal
The CLKRUN# signal is optional and is defined for the mobile environment. It is not available on the PCI
add-in connector.

• Reset Signal (RST#)
When asserted, the reset signal forces all PCI configuration registers, master and target state machines
and output drivers to an initialized state. RST may be asserted or deasserted asynchronously to the CLK
edge. The assertion of RST# also initializes other device specific functions. All PCI outputs must be
driven to their benign states. In general, this means they must be tri-stated. Exceptions include

• SERR# is floated
• If SBO# and SDONE cannot be tri-stated, they will be driven low.
• To prevent the AD bus, the C/BE bus and the PAR signals from floating during reset, they

may be driven low during reset

Address/Data Bus Signals

• AD Bus (AD[31:0])
This bus carries the start address. The resolution of this address is on a doubleword boundary (address
divisible by four) during a memory or a configuration transaction, or a byte specific address during an I/O
read or write transaction

• Command or Byte Enable Bus (C/BE#[3:0])
It defines the type of transaction

• Parity Signal (PAR)
This signal is driven by the initiator one clock after completion of the address phase or one clock after the
assertion of IRDY# during each data phase of write transactions. It is driven by the currently addressed
target one clock after the assertion of TRDY# during each data phase of read transactions. One clock after
the completion of the address phase, the initiator drives PAR either high or low to ensure even parity
across the address bus, and the four command/Byte enable lines

Thus during each data phase  :
•    The data bus is driven by the initiator (during a write) or the currently-addressed target (during a
      read).
•    PAR is driven by either the initiator (during a write) or the currently addressed target (during a read)
      one clock after the assertion of IRDY# or TRDY# during each data phase and ensures even parity
      across AD[31:0] and C/BE#[3:0]. If all four data paths are not being used during a data phase the
      agent driving the data bus (the master during a write or the target during a read) must ensure that
      valid data is being driven into all data paths. This is necessary because PAR must reflect even parity
      over the entire AD and C/BE buses.
•    The C/BE bus is driven by the initiator to indicate the bytes to be transferred within the currently
      addressed doubleword and the data paths to use to transfer the data.
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Transaction Control Signals

Signal Master Target Description

FRAME# In/Out In Cycle Frame is driven by the current initiator and
indicates the start (when its first asserted) and the
duration (the duration of its assertion) of a
transaction. In order to determine that bus ownership
has been acquired, the master must sample FRAME#
and IRDY# both deasserted  and GNT# asserted on
the same rising-edge of the PCI CLK signal. A
transaction may consist of one or more data transfers
between the current initiator and the currently
addressed target . FRAME# is deasserted when the
initiator is ready to complete the final data phase

TRDY# In Out Target Ready is driven by the currently addressed
target. It is asserted when the target is ready to
complete the current data phase. A data transfer is
completed when the target is asserting TRDY# and
the initiator is asserting IRDY# at the rising edge of
the CLK signal. During a read, TRDY# asserted
means that the target is driving valid data on the data
bus. During a write, TRDY# asserted means that the
target is ready to accept data from the master. Wait
states are inserted until both TRDY# and IRDY# are
sampled asserted.

IRDY# In/Out In Initiator ready is driven by the current bus master.
During a write, IRDY# asserted means that the
initiator is driving valid data on the data bus. During
a read, IRDY# asserted means that the initiator is
ready to accept data from the target. In order to
determine that bus ownership has been acquired, the
master must sample FRAME# and IRDY# both
deasserted  and GNT# asserted on the same rising-
edge of the PCI CLK signal.

STOP# In Out The target asserts STOP# to indicate that it wishes
the initiator to stop the transaction in progress on the
current data phase.

IDSEL In In Initialization Device Select is an input to the PCI
device and is used as a chip select during an access
to one of the device’s configuration registers.

LOCK# In/Out In Used by the initiator to lock the currently addressed
memory target during an atomic transaction series
(e.g. during a semaphore read/modify/write
operation)

DEVSEL# In Out Device Select is asserted by a target when the target
has decoded its address. It acts as an input to the
current initiator. If a initiator initiates a transfer, and
does not detect an asserted DEVSEL# within six PCI
CLK signals, it must assume that the target can not
respond or that the address is unpopulated. A master-
abort results
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Arbitration Signals

Each PCI master has a pair of arbitration lines that connect it directly to the PCI bus arbiter. When a
master requires the use of the PCI bus, it asserts its device-specific REQ# line to the arbiter. When the
arbiter has determined that the requesting master should be granted control of the PCI bus, it asserts the
GNT# (grant) line specific to the requesting master. In the PCI environment, bus arbitration can take
place while another master is still control of the bus. This is known as “Hidden” arbitration. When a
master receives a grant from the bus arbiter, it must wait for the current initiator to complete its transfer
before initiating its own transfer. It can not assume ownership of the PCI bus until FRAME# is sampled
deasserted (indicating the start of the last data phase), and IRDY# is then sampled deasserted (indicating
the completion of the last data phase). This indicates that the current transaction has been completed and
the bus has been returned to the idle state.

Interrupt Request Signals

PCI agents that must generate request for service can utilize one of the PCI interrupt request lines,
INTA#, INTB#, INTC#, or INTD#.

Error Reporting Signals

• Data Parity Error
The generation of parity information is mandatory  for all PCI devices that drive address or data
information onto the CA bus.  This is a requirement because the agent driving the AD bus must assume
that the agent receiving the data and parity will check the validity of the parity and may either flag  an
error or even fail the machine if incorrect parity is received.
The detection and reporting of parity errors by PCI devices is generally required.  The specification is
written this way to indicate that, in some cases, the designer may choose to ignore parity errors.  An
example might be a video frame buffer.  The designer may choose  not to verify the correctness of the data
being written into the video memory by the initiator.  In the event that corrupted data is received and
written into the frame memory, the only effect will be one or more video pixels displayed on the screen.
To ensure that correct parity is available to any PCI devices that perform parity checking, all PCI devices
must generate even parity on AD[31:0], C/BE#[3:0] and PAR for the address and data phases.  PERR# is
implemented as an output on targets and as both an input and an output  on masters.  The initiator of a
transaction has responsibility for reporting the detection of a data parity error to software.  For this reason,
it must monitor PERR# during write data phases to determine if the target has detected a data parity error.
The action taken by the initiator on detection of  the error is design dependent.

• System Error
The system error signal, SERR#, may be pulsed by any PCI to report address parity errors, data parity
errors during a special cycle, and critical errors other than parity.  This signal is considered a “last
recourse” for reporting serious errors.  Non-catastrophic and correctable errors should be signaled in some
other way.  In a PC-compatible machine, SERR# typically causes an NMI to the system processor.
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Cache Support Signals

Signal Description
SBO# Snoop back off.  This signal is an output from the PCI cache and

input to cacheable memory subsystems residing on the PCI bus.  It
is asserted by the bridge to indicate that the PCI memory access in
progress is about to read or update stale information in memory.
SBO# is qualified by and only has meaning when the SDONE
signal is also asserted by the bridge.  When SDONE and SBO# are
sampled asserted, the currently addressed cacheable PCI memory
subsystem should respond by signaling a retry to the current
initiator.

SDONE Snoop Done.   This signal is an output from the PCI cache and an
input to cacheable memory subsystems residing on the PCI bus.  It
is deasserted by the bridge while the processor’s cache snoops a
memory access started by the current initiator.  The bridge asserts
SDONE when the snoop has been completed.  The results of the
snoop are then indicated on the SBO#.  SBO# sampled deasserted
indicates that the PCI indicator is accessing a clean line in memory
and the PCI cacheable memory target is permitted to accept or
supply the indicated data.  SBO# sampled asserted indicates that the
PCI indicator is accessing a stale line in memory and should not
complete the data access.  Instead, the memory target should
terminate the access by signaling a retry to the PCI initiator.

Other Signals

The PCI specification provides a detailed definition of a 64-bit extension to its base line 32-bit
architecture.  Systems that implement the extension support the transfer of up to eight bytes per data phase
between a 64-bit initiator and a 64-bit target.
The designer of a PCI device may optionally implement the IEEE 1149.1 boundary scan interface signals
to permit in-circuit testing of the PCI device.  The boundary scan signals include TCK (Test Clock), TDI
(Test Data In), TDO (Test Data Out), TMS(Test Mode Set), and TRST# (Test Reset).
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PCI Bus Arbitration
When a PCI bus master requires the use of the PCI bus to perform a data transfer, it must request the use
of the bus from the PCI bus arbiter. The PCI specification defines the timing of the request and the grant
handshaking, but not the procedure used to determine the winner of the bus access competition. The
algorithm used to decide this is therefore system specific.

The Arbiter

At a given instant in time, one or more PCI bus master devices may require use of the PCI bus to perform
a data transfer with another PCI device. Each requesting master asserts its REQ# output to inform the bus
arbiter of its pending request to use the bus.

As shown above the each possible PCI bus master is connected to the PCI bus arbiter via a separate pair of
REQ#/GNT# signals. Although the bus arbiter is shown as a separate component, it is usually integrated
into the host /PCI or PCI/expansion bus bridge chip.

Arbitration Algorithm

As stated earlier, the PCI specification does not specify the scheme used by the PCI bus arbiter to decide
the winner of the competition when multiple masters simultaneously request bus ownership. The arbiter
may utilize any scheme, such as one based on fixed or rotational priority, or any combination of schemes.
The specification for PCI version 2.1 states that the arbiter is required to implement a fairness algorithm
to avoid deadlocks. The exact verbiage used is :

    PCI
  Device

    PCI
  Device

    PCI
  Device

    PCI
  Device

  Arbiter

REQ#/GNT#

REQ#/GNT#

REQ#/GNT#

REQ#/GNT#
Pair

The PCI Bus
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The central arbiter is required to implement a fairness algorithm to avoid deadlocks.
Fairness means that each potential bus master must be granted access to the bus
independent of other requests. However, this does not mean that all agents are required
to have equal access to the bus. By requiring a fairness algorithm there are no special
conditions to handle when LOCK# is active (assuming a resource lock) or when
cacheable memory is located on PCI. A system that uses a fairness algorithm is still
considered fair if it implements a complete bus lock instead of a resource lock. However,
the arbiter must advance to a new agent if the initial agent attempting to establish a lock
is terminated with retry.

 Fairness is defined as a policy in which high priority masters will not dominate the bus to the point of
exclusion of low priority masters when they are continually requesting the bus.

Ideally, the bus arbiter should be programmable by the system. The startup configuration software can
determine the priority to be assigned to each bus master by reading from the maximum latency (Max_Lat)
register within each bus master. The device designer hardwrites this register value, in increments of 250
ns, how often the device requires bus access to achieve adequate performance.

When a potential master is granted access by the arbiter, the GNT# input to that master is asserted. This
grants access for one transaction consisting of one or more data phases. If a master is granted access and
the master does not initiate a transaction (assert FRAME#) within 16 PCI clocks, the arbiter assumes the
master is malfunctioning. Once again, the action taken by the arbiter in such a case is system design
dependent.

An Example of an Arbiter with Fairness (From PCI Specification)

A system may divide the overall community of bus masters on a PCI bus into two categories :

1.  Bus masters that require fast access to the bus in order to achieve good performance, such as a video
adapter, ATM (Asynchronous Transfer Mode, not Automated Teller Machine) interface, or a FDDI
interface.

2.  Bus masters that do not require very fast access to the bus such as a SCSI host bus adapter.

The arbiter segregates the REQ#/GNT# signals into two groups with greater precedence given to those in
one group.

In the example we assume that masters A and B are in the group requiring fast access, while masters X, Y
and Z are in the other group. The arbiter may be programmed to treat each group as rotational priority
within and between the groups.
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Assume the following conditions :

• Master A is the next to receive the bus in the first group.
• Master X is the next to receive it in the second group.
• A master in the first group is the next to receive the bus
• All masters are asserting REQ# and wish to perform multiple transactions. (i.e. they keep REQ#

asserted even after starting a transaction.

The order in which the masters would receive access to the bus is :

1.  Master A
2.  Master B
3.  Master X
4.  Master A
5.  Master B
6.  Master Y
7.  Master A
8.  Master B
9.  Master Z

The masters in the first group are allowed to access the bus more frequently than the masters in the second
group.

Master A

Master B

Master X

Master Y

Second
Group

Second Group

First Group

Master Z



CPE 602 : Study of Advanced Bus Architecture

14

Bus Arbitration Issues

• Master Wishes To Perform More Than One Transaction
If the master has another burst to perform immediately after the one it just initiated, it should keep its
REQ# line asserted after it asserts the FRAME# output. This lets the arbiter know of its desire. Depending
on other pending requests, the arbiter may or may not permit the master to retain ownership of the bus
after the current transaction. The master should keep its REQ# output asserted until it obtains bus
ownership again and it has no more bursts to perform. At any instant in time, only one master may use the
bus. This means that only one GNT# line will be asserted at a time.

• Hidden Bus Arbitration
Unlike some arbitration schemes, the PCI scheme allows bus arbitration to take place while the current
master is performing a data transfer. If the arbiter decides to grant ownership of the bus to another master
it takes the GNT# signal from the current master and issues it to the next owner of the bus. The next
owner however, can not assume bus ownership, until the bus is idled by the current master. No bus time is
wasted for a dedicated bus arbitration.

• Bus Parking
A master must only assert REQ# output to signal a current need for the bus. It is not allowed to assert
REQ# to “park” the bus on itself. However a default bus owner may be designated by the designer by
implementing the arbiter logic so that it asserts the GNT# line for that master when no other REQ# lines
are asserted.
The specification states that the bus should parked on the last master that acquired the bus. When the
arbiter parks the bus on a master (by asserting its grant) and the bus is idle, the master becomes
responsible for keeping the AD bus, C/BE bus and PAR from floating. The master must enable its
AD[31:0], C/BE[3:0], and one clock later the PAR output drivers. This procedure ensures that the bus
doesn’t float during bus idle periods. If the arbiter is not designed to park the bus, it should drive the AD
bus, C/BE bus and PAR lines itself when the bus is idle.

Request/Grant Timing

When the arbiter determines that it is a masters turn to use the bus, it asserts the master’s GNT# line. It
may deassert a master’s GNT# line on any PCI clock. A master must ensure that its GNT# line is asserted
on the rising edge of the PCI CLK. Once the GNT# line is asserted, it may be deasserted under the
following circumstances :

• If GNT# is deasserted and FRAME# is asserted the transfer is valid and will continue. The
deassertion of the GNT# line by the arbiter tells the master that it will no longer own the bus after the
current transaction. The master keeps FRAME# asserted while the current transaction is in progress,
and deasserts it when it is ready to complete the final data phase.

• GNT# may be deasserted during the final data phase in response to the current master’s REQ# signal
being deasserted.

• The GNT# to one master may be deasserted simultaneously with the assertion of another master’s
GNT#, if the bus is not in the idle state. Idle state is the state in which both FRAME# and IRDY# are
deasserted.
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FRAME# IRDY# Description
deasserted deasserted Bus Idle
deasserted asserted Initiator is ready to complete the last data transfer of a transaction, but

it is not completed yet.
asserted deasserted A transaction is in progress, and the initiator is not ready to complete

the current transaction
asserted asserted A transaction is in progress, and the initiator is ready to complete the

current transaction

Arbitration Example Between Two Masters

Assumptions :
• Bus master A requires the bus to perform two transactions. The first consists of a three data phase

write and the second consists of a single data phase write.
• The arbitration scheme is fixed and bus master B has a higher priority than bus master A
• Bus master B only requires the bus to execute a single transaction consisting of one data phase.

All PCI signals are sampled on the rising edge of the PCI CLK.

Sample Arbitration Sequence :

1.  Bus master A asserts its REQ# line prior to CLK 1. The arbiter samples this request at the rising
edge of  CLK 1. Master B still doesn’t have its REQ# asserted. During CLK 1 the arbiter grants
access to A by asserting the GNT# line to A. During CLK 1 master B asserts its REQ# line.

2.  Bus master A samples its GNT# line asserted during the rising edge of CLK 2. It also samples
FRAME# and IRDY# deasserted indicating that the bus is idle. A asserts FRAME# and begins to
drive the address on AD[31:0] and the command on C/BE[3:0]. It also keeps its REQ# line asserted.

3.  On the rising edge of CLK 2 the arbiter samples the requests from A and B, and starts the arbitration
process to determine the next bus master.

4.  During CLK 2 the arbiter removes GNT# from A
5.  During the rising edge of CLK 3 master A realizes that it has been preempted, but since the LT timer

has not expired it continues with the current transaction. Also, the GNT# line for B is asserted by the
arbiter.

6.  On the rising edge of CLK 4 master B samples the asserted GNT# signal, indicating that it may be
the next owner. B must continue to sample the signal until it actually acquires the bus.

7.  During CLK 3 master A drives the first data item on the AD bus, and asserts the appropriate C/BE
lines. At the rising edge of CLK4, both IRDY# and TRDY# are sampled asserted and the first data
transfer occurs. The second data transfer occurs at the rising edge of CLK 5. Also during CLK 5
FRAME# is deasserted. At the rising edge of CLK 6 the third and final data transfer occurs.

8.  During CLK 6 master A deasserts IRDY#, thus returning the bus to idle state.
9.  On the rising edge of CLK 7, master B samples FRAME# and IRDY# both deasserted and determines

that the bus is now in idle state. It also samples GNT# still asserted. It deasserts REQ# line and
asserts the FRAME# line. Also during CLK 7 master B starts driving the address and the command
buses.
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10.  At the rising edge of CLK 8, the arbiter samples the REQ# line of A asserted and that of B
deasserted. The arbiter deasserts B’s GNT# line and asserts A’s GNT# line.

11.  During CLK 8, master B deasserts its FRAME# line indicating  that it has reached the final stage
(first and only in this example) of its data phase. It also drives the data and command lines to the
appropriate values.

12.  On the rising edge of CLK 9 master B samples IRDY# and TRDY# asserted and transfers the data. It
then deasserts the IRDY# line.

13.  On the rising edge of CLK 10, master A samples the FRAME# and IRDY# lines deasserted and its
GNT# line asserted indicating that it has ownership of the bus. It deasserts its REQ# line, and asserts
the FRAME# line. Address and Data phases of the transaction proceed as usual.

Access Latency

Arbitration Latency
It is the period of time from the bus master’s assertion of REQ# until the bus arbiter asserts the master’s
GNT#. It depends on the arbitration algorithm, the master’s priority, and the number of masters
requesting ownership of the bus.

Bus Acquisition Latency
It is the period of time from the reception of GNT# by the requesting bus master until the current bus
master surrenders the bus.

Target Latency
It is the period of time from the start of a transaction until the currently addressed target is ready to
complete the first data transfer of the transaction. It depends on the access time of the currently accessed
target device.

Bus access latency
The amount of time that expires from the moment a bus master requests the use of the PCI bus, until it
completes the first data transfer

Bus Access Latency = Arbitration Latency + Bus Acquisition Latency + Target Latency

PCI Bus masters should always use burst transfers to transfer blocks of data between themselves and target
PCI devices. In order to insure that the designers are dealing with a predictable and manageable amount
of bus latency, the PCI specification defines two mechanisms :

• Master Latency Timer
• Target Initiated Termination

Master Latency Timer (LT)
The LT is implemented inside the bus masters configuration space, and is either initialized by the
configuration software at startup or contains a hardwired value. This value is the minimum value of time
that the bus master is allowed to have ownership of the bus. When the bus arbiter grants bust ownership to
another master while the current master is in the midst of a burst transfer (the current master is
preempted)  the bus master may keep ownership until one of the following :

• It completes its burst transaction
• The LT timer expires

Even after the LT expires, the current master is allowed one more data transfer after which it must
relinquish control of the bus.
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Any master that performs more than two data phases per transaction must implement the LT.
If the LT value is hard wired, it must not exceed 16.

Target Initiated Termination
A target with very slow access time may monopolize the bus, while a data item is being transferred
between it and the master. The PCI specification requires a target to terminate the transfer prematurely if
it will tie up the bus for long periods.

There are four possible cases :
1.  If the time to complete the first data phase will be greater than 16 PCI CLKs, the target must

immediately issue a retry to the master. Two exceptions are reading expansion ROM images and
configuration startup. After two PCI CLKs have elapsed the master may reassert its request.

2.  It will take more than eight PCI CLKs to complete a data phase other than the first, and it is not the
final data phase (FRAME# is still asserted). The target must issue a disconnect or a target abort.

3.  If a target can transfer the current data item within eight PCI CLKs but knows in advance that the
next item will require more than eight cycles.

4.  If the attempt to communicate with a target results in a collision on a busy resource, the target must
issue a retry immediately.

Fast Back To Back Transactions

Assertion of its grant by the PCI bus arbiter gives a PCI bus master access to the bus for a single
transaction. If a bus master desires another access, it should continue to assert its REQ# line after it has
asserted its FRAME# line for the first transaction. If the arbiter continues to assert its GNT# line after the
first transaction, it means that the master still has ownership of the bus and it may immediately start a
new transaction. However, the master still must insert an idle state between the two transactions. When it
doesn’t have to do that it’s called Fast Back to Back Transactions. This can only be done if there is a
guarantee that there will be no contention between masters and/or targets involved in the two transactions.

There are two scenarios :
1.   In the first case, the master guarantees that there will be no contention.
2.   In the second case, the master and the community of PCI targets collectively provide the guarantee

The designer of the bus master must make an informed decision as to whether its worth the additional
logic it would take to implement it.

Assume a master whose nature of work requires it to make long burst transfers whenever it acquires bus
ownership. Fast back-to-back transactions would not be of real benefit in such a case because one PCI
CLK is small compared to the total burst transfer time. However a master that makes one PCI CLK
transfers would benefit by the inclusion of such logic.

Scenario One : Master Guarantees Lack of Contention

In this scenario, the master must ensure that, when it performs two back to back transactions with no idle
state in between them, there is no contention on any of the signals driven by the master or those driven by
the target. An idle cycle is required whenever AD[31:0], C/BE#[3:0], FRAME#, PAR and IRDY# are
driven by different masters from one clock cycle to the next. The idle cycle allows one cycle for the master
currently driving these signals to surrender control before the next bus master begins to drive the bus. This
prevents bus contention.
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The master must ensure that the same set of output drivers are driving the master related signals at the
end of the first transaction and the start of the second. This means that the master must ensure that it is
driving the bus at the end of the first transaction and at the start of the second. To meet this criteria, the
first transaction must be a write transaction and the second transaction can be either a read or a write
transaction, but must be initiated by the same master. The signals asserted by the target of the first
transaction at the completion of the final data phase are TRDY#, and DEVSEL# (sometimes STOP#).
Two clocks after the end of the data phase, the target may also drive PERR#. Since it is the rule in this
scenario that the same target must be addressed in the second transaction, the same target again drives
these signals.

Recognizing a new Transaction
It is a PCI rule that all PCI targets must recognize either of the following conditions as the start of a new
transaction:

•     Bus Idle (FRAME# and IRDY# deasserted) on the rising edge of the PCI CLK followed on the next
       rising edge by the address phase in progress (FRAME# asserted and IRDY# deasserted)
•     Final data phase in progress (FRAME# asserted and IRDY# deasserted) on a rising edge of the PCI
       CLK, followed by on the next rising edge by the address phase in progress (FRAME# asserted and
       IRDY# deasserted).

Scenario Two : Targets Guarantee Lack of Contention

In the second scenario, the entire community of the PCI targets that reside on the PCI bus and the bus
master collectively guarantee lack of contention during fact back to back transactions. A constraint
incurred when using the master guaranteed method is that the master can only perform fast back to back
transactions if  both transactions access the same target, and the first transaction is a write.

The reason that scenario one states that the target of the first and second transactions must be the same
target is to prevent the possibility of a collision on the target related signals : TRDY#, DEVSEL#, and
STOP#. The possibility can be avoided if:

1.    All targets have medium or slow address decoders and
2.    All targets are capable of discerning that a new transaction has begun without a transition through
       the bus idle state, and are capable of latching the address and command associated with the second
       transaction.

If all the targets on the PCI bus meet the above requirements then any bus master can perform fast back to
back transactions with different targets in the first and second transactions. The first transaction must still
be a write, and the second transaction must still be performed by the same master, to prevent collisions on
master related signals.

The above statement implies that there is a method to determine if all the targets support this feature.
During system configuration, the software polls each device’s configuration status register and checks the
state of it FAST BACK TO BACK CAPABLE bit. The designer of a device hardwires this bit to zero if
the device does not support this feature. If all the devices indicate support for this capability, then the
configuration software can set each master’s FAST BACK TO BACK ENABLE bit in its configuration
command register. When this bit is set, a master is enabled to perform fast back to back transactions with
different targets in the first and second transactions.

A target supports this capability if it meets the following criteria :

1.    Normally a target recognizes a bus idle condition by sampling the FRAME# and IRDY# signals



CPE 602 : Study of Advanced Bus Architecture

19

       deasserted. It then expects and recognizes the start of the next transaction by sampling FRAME#
       asserted and IRDY# deasserted. At that point, it latches the address and command and begins the
       address decode. To support this feature, it must recognize the completion of the final data phase of
       one transaction by sampling FRAME# deasserted and IRDY#, TRDY# asserted. This would then
       immediately be followed by the start of the next transaction, as indicated by sampling FRAME#
       asserted and IRDY# deasserted during the next rising PCI CLK edge.

2.    The target must ensure that there isn’t contention on TRDY#, DEVSEL#, STOP#, and possibly
       PERR#. If the address has a medium or slow address decoder, this provides the guarantee. If the
       target has a fast address decoder, it must delay assertion of these three signals by one clock to
       prevent contention. There are two circumstances when a target with a fast decoder does not have to
       insert this delay :

•   The current transaction was preceded by a bus idle state.
•   The currently addressed target was also addressed in the previous transaction.

Broken Master

The arbiter assumes that a master is broken if after asserting the GNT# line to that master, the bus has
been idle for 16 PCI CLK cycles, and the master has not asserted its FRAME# signal to indicate the start
of its transaction. The arbiter is permitted to ignore all future requests from a broken master, and may
optionally report the failure to the operating system.
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PCI BIOS And Cache Support

Purpose of PCI BIOS

The operating system, application programs and device drivers must not directly access the PCI
configuration registers, interrupt routing logic, or the special cycle generation logic. The hardware
methods utilized to implement these capabilities are platform dependent. Any software that directly
accesses these capabilities is therefore by definition, platform specific. This leads to compatibility
problems between different platforms, and sometimes even between different versions of the same
platform.

Instead a request should be issued to the PCI BIOS. The BIOS is platform specific. It is implemented in
firmware, and possibly in the operating systems hardware abstraction layer (HAL). The PCI BIOS
supports the following services :

•    Permits determination of configuration mechanism(s) supported by the PCI chipset
•    Permits determination of the chipset’s ability to generate special cycles and the mechanism(s) used to
      do so.
•    Permits determination of the range of PCI buses present in the system.
•    Searches for all instances of a specific PCI device or a device that falls within a class.
•    Permits generation of special cycles.
•    Allows the caller to get PCI interrupt routing options and then to assign one to the device.
•    Permits read and write (if possible) of a device’s configuration registers.

Operating System Environments Supported

General
Different operating systems have different operational characteristics such as usage of system memory,
calling BIOS services, etc. In the systems based on the Intel x86 family, the operating system falls into
one of the following category :

•    Real Mode OS
•    286 Protected mode
•    386 Protected mode. This mode is divided into the segmented and flat models.

The PCI BIOS specification defines the following rules regarding the implementation of the PCI BIOS
and the software that calls it :

•    The PCI BIOS must support all of the OS environments.
•    The BIOS must preserve all registers and flags with the exception of those used for return parameters
      and errors.
•    Caller will be returned to with the state of the interrupt flag the same as it was on entry.
•    Interrupts will not be enabled during the execution of the BIOS function call.
•    The BIOS routines must be reentrant (i.e. they must be callable from within themselves).
•    The OS must define a stack memory area at least 1 KB in size for the BIOS.
•    The stack segment and the code segment defined by the operating system for the BIOS must have the
      same size (16 or 32-bit).
•    Protected mode OS that call the INT 1Ah BIOS must set the CS register to F000h.
•    The OS must ensure that the privilege defined for the BIOS permits interrupt handling and
      performance of I/O instructions.
•    Implementers of the BIOS must assume that the CS for the BIOS defined by the OS is execute only
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      and that the DS is read only.

Real-Mode

Real-mode OSs, such as MS DOS, are written to be executed the 8088 processor. That processor is
capable of addressing upto 1 MB of memory. Using four 16-bit segment registers (CS, DS, SS, and ES),
the programmer defines four segments of memory, each with a fixed length of 64 KB.

MS DOS makes calls to the BIOS by loading a subset of the processor’s register set with request
parameters and then executing a software interrupt instruction that specifies entry 1Ah in the interrupt
table containing the entry for the entry point to BIOS. Upon executing the INT 1Ah instruction, the
processor pushes the address of instruction that follows the INT 1Ah onto the stack. Now the processor
reads the pointer from 1Ah in the interrupt table and starts executing at the indicated address. This is the
entry point for BIOS.

An alternative way to call the BIOS is to make the call directly to the BIOS entry point at the physical
memory location 000FFE6Eh.

286 Protected  Mode

The BIOS specification refers to this as the 16:16 mode because the 286 processor has 16-bit segment
registers, and the programmer specifies the address of an object by specifying a 16-bit offset within a
segment.

When operating in this mode, the 286 addresses memory differently. Rather than containing the upper
four hex digits of the segments physical five hex digit start address in memory, the value in the segment
register is referred to the segment selector. It points to an entry in the segment descriptor table that is built
and maintained by the operating system. Each entry in this table has an eight byte value defining :

•    the 24-bit physical start address of the segment in memory.
•    the length of the segment
•    the type of access (read only, read/write, execute only, etc.)

The method of calling the BIOS remains the same as in real-mode OSs.

386 Protected Mode

Segmented Mode
The 386 processor changed the maximum size of each segment from 64 KB to 4 GB in size. The 486 and
the pentium processors have the same segment size as the 386. The 386 also gas a 32-bit register set. This
mode is also called the 16:32 mode in the BIOS specification. Rather than containing the upper four hex
digits of the segments physical five hex digit start address in memory, the value in the segment register is
referred to the segment selector. It points to an entry in the segment descriptor table that is built and
maintained by the operating system.

Each entry in this table has an eight byte value defining :

•    the 32-bit physical start address of the segment in memory.
•    the length of the segment
•    the type of access (read only, read/write, execute only, etc.)

In the 32-bit OS environment the BIOS is not called in the conventional way. Rather, the calling program
executes a FAR call to the BIOS entry point. This implies that the BIOS entry point is known.
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Flat Mode
A much simpler memory model is to set all of the segment registers to point to segment descriptors that
define each segment starting at a physical memory location 00000000h, and with a length of 4 GB. This is
called the flat memory model. The BIOS specification refers to this as the 0:32 mode. As in the segmented
mode, the BIOS is not called in the conventional way. Rather, the calling program executes a FAR call to
the BIOS entry point. This implies that the BIOS entry point is known.

Calling the PCI BIOS

As stated earlier the 16-bit PCI BIOS is called by either executing an INT 1Ah call or by directly calling
the PCI BIOS at memory location 00FFE6Eh. The 32-bit BIOS is called by performing a FAR call. In
both cases the caller must first load the required request parameters into the processor’s register set. On
entry, the AH register must obtain the PCI function ID of B1h. The AL register must contain the PCI sub-
function identification.

Example :  PCI BIOS Present Call

•    AH is set to B1h and AL is set to 01h.

On return the register set contains the following values :

•    EDX contains the ASCII string “PCI”, with DL = “P”, DH = “C”, and the byte above DL = “I”. The
      upper byte of the EDX set is set to ASCII space (32).
•    AH = 00h
•    AL  is a byte with the following bit information

Bits 2, 3, 6, and 7: Reserved
Bit 0 : Set to 1 if the PCI bridge uses config mechanism #1.
Bit 1 : Set to 1 if the PCI bridge uses config mechanism #2.
Bit 4 : Set to 1 if special cycle is supported via config mechanism #1.
Bit 5 : Set to 1 if special cycle is supported via config mechanism #2.

•    BH = BIOS major version in BCD
•    BL = BIOS minor version in BCD
•    CL = number of the last PCI bus in the system
•    Carry bit is cleared if BIOS present
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PCI BIOS Function Request Codes

Function Request AH AL

PCI Function ID B1h 00h
Test For PCI BIOS Present B1h 01h
Find PCI Device B1h 02h
Find PCI Class Code B1h 03h
Generate a Special Cycle B1h 06h
Read Configuration Byte B1h 08h
Read Configuration Word B1h 09h
Read Configuration DoubleWord B1h 0Ah
Write Configuration Byte B1h 0Bh
Write Configuration Word B1h 0Ch
Write Configuration DoubleWord B1h 0Dh
Get PCI Interrupt B1h 0Eh
Set PCI Interrupt : Used to route a
device’s interrupt request line to the
specified system interrupt request line

B1h 0Fh

The BIOS specification contains detailed description for each of these function calls.

PCI Cache Support

Most  PCI systems available in the market today do not support cacheable memory on the PCI bus. It
creates considerable complexity and the rewards may not be justified due to the degraded system
performance.

   Processor
      And
  L1 Cache

   System
   Memory

   Memory
  Controller

  PCI
Bridge

   Memory
    Target

   PCI Bus

   Host Bus

   SDONE

   SBO#
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Definition of Cacheable memory
A cacheable PCI memory target is a memory device residing on the PCI bus that the processor’s L1 cache
(and if present the L2 cache) can cache information from.

Reason for Supporting Cacheable Memory on the Bus
There are quite a few PCI design rules related to support for cacheable memory targets on the PCI bus.
There are so many rules, in fact, that it makes one wonder why anyone would even consider caching from
memory targets that reside on the PCI bus.
The specification includes support for cacheable memory on the PCI bus for system designs where the
processor, main memory and all other major system devices reside directly on the PCI bus. The
processor’s front end logic has been redesigned to interface directly to the PCI bus. In this type of system,
therefore, the cache and the memory that it caches from reside directly on the PCI bus.

Integrated Cache /Bridge
Many systems that incorporate the PCI bus also incorporate a level two (L2) cache associated with the
host processor. These systems possess the following basic elements:

•    The host processor possibly with an integrated level one cache.
•    L2 cache controller and cache SRAM.
•    System DRAM memory and controller.
•    The host/PCI bridge.
•    The PCI bus.
•    PCI memory and I/O targets.
•    PCI bus master.
•    Expansion bus such as ISA, EISA or Micro Channel.

The L2 cache controller integrated with the bridge may use either a write through or a write back policy
when handling memory writes initiated by the host processor.

PCI Cache Support Protocol

Basics

Whenever a memory access is initiated on the PCI bus by a bus master other than a host PCI bridge, the
bridge must ensure the following:

•    If it implements a write back controller, it must ensure that the current initiator isn’t about to read
     data from or update data in a stale line in memory. It must also ensure that it invalidates its copy of a
     clean cache line in the event of a snoop hit on a write by a PCI bus master.
•    If it implements a write through cache controller, it must ensure that it invalidates its copy of a cache
     line in the event of a snoop hit on the write by a PCI bus master.

To prevent a PCI bus master from reading data from or updating data in a stale memory line, the bridge
must have some way of informing the PCI memory target of the snoop result. Under some circumstances
the target memory must force the PCI initiator to retry the transaction later. The bridge implements two
output signals, SDONE and SBO#, to inform the cacheable PCI memory target of  the snoop result.
SDONE is asserted by the bridge when it has completed snooping a PCI memory access. When SDONE is
asserted, this indicates that the snoop result is available on the bridge’s  SBO# output signal. SBO# is
asserted by the bridge in conjunction with SDONE to force the addressed PCI memory target to issue a
retry to the PCI initiator in the event of a snoop hit on a modified cache line.
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Case 1: Clean Snoop

Let us assume that the PCI cache is a write back cache. All cacheable PCI memory targets must monitor
SDONE and SBO# during memory accesses.  The currently addressed cacheable memory target must
insert wait states in the data phase (by keeping TRDY# deasserted) until the snoop results are made
available by the bridge. In this example the result of the snoop indicates either a miss or a hit on a clean
line (SDONE asserted and SBO# deasserted) and the bridge signals this to the memory target. This is
referred to as a clean snoop. The target then asserts TRDY#, accepts the data from the initiator and the
initiator ends the transaction. The following is a description of  the process:

1.  The bus master starts the transaction when it samples its GNT# asserted and bus idle (FRAME# and
IRDY# deasserted). It asserts FRAME#, drives the address onto the AD bus and the memory write
command onto the C/BE bus.

2.  The memory target samples FRAME#, the address and the command on the clock edge two and
begins the address decode process.

3.  The address space completes on the rising edge of clock two and the initiator ceases to drive the
address and command, and begins to drive the write data on to the AD bus and the byte enables onto
the C/BE bus. It asserts IRDY# to indicate the presence of the data to the target. It also deasserts
FRAME#, indicating that it’s ready to complete the last data phase. The currently addressed target
asserts DEVSEL# during clock two to claim the transaction.

4.  Because the memory target is cacheable memory, it must monitor SDONE and SBO# and is not
permitted to accept the data from the initiator until the results of the snoop become available. The
target keeps TRDY# deasserted until clock four because SDONE has not yet been asserted. On the
rising edge of clock five SDONE is sample asserted, indicating that the results of the snoop are
available on SBO#. SBO# is sampled deasserted, indicating a clean snoop.

5.  The target asserts TRDY# during clock five. The target and initiator sample IRDY# and TRDY#
asserted on the rising edge of clock six. The target accepts the data, completing the data phase. The
initiator deasserts IRDY#, returning the bus to the idle state. The target deasserts TRDY# and
DEVSEL#.

6.  The bridge deasserts SDONE in clock 5, indicating that it is ready to receive another snoop address.

Case 2: Snoop Hit On Modified Line Followed By Write Back

Assume that a PCI bus master starts a memory read or write transaction targeting a cacheable memory
target on the PCI bus. The address is snooped by the bridge, resulting in a snoop hit on a modified line.
Unless something is done to prevent it, the bus master is about to read data from or write data into a stale
line in memory. To prevent this, the bridge instructs the memory target to issue a retry to the initiator.
The bridge then arbitrates for bus ownership and initiates a write transaction (also referred to as a write
back) to deposit the fresh line into memory before the bus master re-attempts the memory access. In order
to ensure that the bridge receives bus ownership quickly, the specification recommends that the bridge
assert a point to point signal to the arbiter along with its REQ#. Upon seeing this, the arbiter would grant
bus ownership to the bridge next. Having deposited the fresh line into memory, the bridge marks its copy
of the line as clean if the write back was caused by a memory read attempt , or invalid if the write back
was caused by a memory write attempt. Following is the sequence of events:
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1.  The bus master starts the transaction when it samples its GNT# asserted and bus idle (FRAME# and
IRDY# deasserted). It asserts FRAME#, drives the address onto the AD bus and the memory write
command onto the C/BE bus.

2.  The memory target samples FRAME#, the address and the command on the clock edge two and
begins the address decode process.

3.  The address space completes on the rising edge of clock two and the initiator ceases to drive the
address and command, and begins to drive the write data on to the AD bus and the byte enables onto
the C/BE bus. It asserts IRDY# to indicate the presence of the data to the target. It also deasserts
FRAME#, indicating that it’s ready to complete the last data phase. The currently addressed target
asserts DEVSEL# during clock two to claim the transaction.

4.  Because the memory target is cacheable memory, it must monitor SDONE and SBO# and is not
permitted to accept the data from the initiator until the results of the snoop become available. The
target keeps TRDY# deasserted until clock four because SDONE has not yet been asserted. On the
rising edge of clock five SDONE is sample asserted, indicating that the results of the snoop are
available on SBO#.  SBO# is sample asserted, indicating that it was a snoop hit on a modified line.

5.  As a result, the target keeps TRDY# deasserted and asserts STOP# during clock four, instructing the
initiator to stop the transaction on this data phase with no data transferred and to retry the transaction
later.

6.  When the initiator samples STOP# and DEVSEL# asserted and TRDY# deasserted, it deasserts
IRDY# during clock five returning the bus to the idle state. The bridge must leave SDONE and SBO#
asserted until it accomplishes the write back of the modified line to the cacheable memory target. As a
result, any bus master that attempts to access any cacheable memory during this interim period is
retried by the memory target because of the bridge’s continued indication of a snoop hit on a modified
line.

7.  The bridge then arbitrates for access to the bus so that it may deposit the fresh line into memory i.e. to
perform the write back. The arbiter grants the bus to the bridge and the bridge starts the write back.
During the address phase, the bridge changes the setting on SBO# to indicate a clean snoop. This
transition from the indication of a snoop hit on a modified line to a clean line instructs the memory to
accept the entire line being deposited in memory by the bridge. If the memory target cannot
immediately accept the entire line it must insert wait states (by keeping TRDY# deasserted) until it
can accept the data.

8.  During the next clock cycle, the bridge deasserts SDONE, returning the snoop signals to the standby
state. The bridge performs the required number of data phases to deposit the entire line in memory
and ends the transaction.

9.  The bus master retries the transaction and this time a clean snoop results (because the state of the line
is invalid). The memory target asserts TRDY# and accepts the data being written to it.

Treatment Of Memory Write And Invalidate Command

When a bus master initiates a memory write and invalidate transaction, it is guaranteeing that it is going
to write the entire line into memory. When the bridge detects such a transaction it takes one of the two
actions:

1.  In the event of a snoop miss or a snoop hit on a clean or modified line, the bridge can signal a clean
snoop back to the memory target, and the PCI memory target can assert TRDY# and start accepting
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the data. If the result is a snoop hit on a modified line, the bridge can invalidate the line and indicate
a clean snoop because the current bus master is guaranteeing that it will update the entire line in
memory rendering the cache’s copy stale. From a performance standpoint, this is the preferred
approach.

2.  In the event of a snoop hit on a modified line, the cache could signal the result as a hit on a modified
line. As a result, the PCI memory target asserts STOP#, issuing a retry to the master. This process has
been described in case 2 of this paper. This approach works but is wasteful.

Non-Cacheable Access Followed  Immediately By Cacheable Access

Problem:

Upto this point in the discussion it has been assumed that the bridge and the cacheable memory target
have the ability to latch on line address at a time. Continuing this assumption, consider the following
scenario.

1.  A bus master starts a single data phase memory transaction with a non-cacheable memory target. The
bridge latches the address for snooping and the memory target latches it for decode. The bridge keeps
SDONE deasserted while it performs the snoop, but, because the memory target is non-cacheable, the
target is not connected to the snoop result signals and therefore permits the initiator to complete the
transaction while the snoop is still in progress.

2.  A bus master starts another memory access to a cacheable memory target. This memory targets
controller was monitoring SDONE’s activity for the previous transaction and has not yet seen it
asserted. This indicates that the bridge is not yet done snooping the line address of the previous
transaction. Because the bridge can only latch and snoop one address at a time in this scenario, the
cacheable memory target must issue a retry to its initiator.

3.  During the premature termination of this transaction the snoop results are presented (for the first
transaction) but alas nobody cares.

4.  When the memory access to the cacheable memory target has been stopped by the retry, a bus master
initiates another single data phase access targeting a non-cacheable memory target. Once again this
transaction completes without a waiting snoop completion.

5.  The transaction to the cacheable memory that was stopped earlier is now re-initiated and this time too
results in a retry because the snoop for the previous access is still in progress.

6.  In theory an access to a cacheable memory target may never complete if the bus is experiencing
interleaved single data phase accesses to non-cacheable and cacheable memory targets.

Solution: Snoop Address Buffer With Two Entries

The revision 2.0 specification made it a requirement that the bridge and cacheable memory targets have
the ability to latch two addresses:  the first for the snoop in progress and the second for the transaction just
initiated.

1.  In the scenario described above, the bridge latched the snoop address for the first access.
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2.  When the access completes, the access to the cacheable memory target starts. The bridge latches this
address to be snooped after completion of the first snoop. The cacheable memory target is required to
insert wait states into the data phase (by keeping TRDY# deasserted) until the result of the first snoop
is presented.

3.  It then monitors SDONE again on each clock edge until the result of the second snoop becomes
available. When this snoop result is presented, it reacts accordingly.

4.  If the target of the second transaction asserts TRDY# to indicate its readiness to complete the data
transfer or STOP# to abort the transaction, before or coincident with the presentation of the result of
the first snoop, this indicates that the target of the second access is also non-cacheable. In response,
the bridge discards the second snoop address.

Gambling Cacheable Memory Targets

It is permissible within the constraints of a specification to build a cacheable memory target that does not
wait for the results of a snoop before allowing a memory write access to complete.  The goal would be
performance enhancement during burst writes to cacheable memory targets. This implies that data could
be written to a stale line in memory. In order to implement this feature the following steps would have to
occur:

1.  The cacheable memory target allows the memory write to complete without awaiting the result of the
snoop. It must latch and remember the date written and the address it was written to so that it may
“fix” the situation if necessary. After the memory write has completed the target must continue to
monitor the snoop result signals until the results of the bridge’s snoop becomes available.

2.  All cache memory targets that reside on the PCI bus are required to “watch” memory transactions
even when they are not the target of the current transaction. This being the case, other cacheable
memory targets on the bus are aware that the next snoop result that shows up on the snoop result
signals is for a previously completed transaction.

3.  If no other access to a cacheable memory target occurs before the snoop result for the write is
presented, the snoop result is ignored.

4.  If, however, an access is started to any cacheable memory target on the bus, that cacheable target can
assert DEVSEL# and claim the transaction but it must insert wait states until the snoop result for the
previously concluded transaction is presented by the bridge.

5.  The first time that SDONE is asserted during the transaction, the snoop result is latched by both the
target of the current transaction and by the target that accepted the write data earlier (the gambler).

6.  If the snoop result is clean, the gambler breaths a sign of relief and the target of the current
transaction continues to keep TRDY# deasserted until the result of its snoop is presented. If the snoop
result is clean, it asserts TRDY# and permits its master transfer data. If the result is a hit on a
modified line, it issues a retry to its master so that the bridge can get the bus and freshen the stale line
in memory.

7.  If the result of the first snoop had been a hit on a modified line, the gambler gambled and lost. The
target of the current transaction issues a retry to its master. It also realizes that the bridge cannot
snoop its address because it must perform the write back of the modified line to memory. The gambler
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also realizes that the bridge will get the bus and burst write the fresh line into memory. It must accept
the line and then make changes that were made earlier by it on that line (during the gamble).

PCI Bridge With No Cache

When the bridge does not incorporate a cache and none of the PCI masters on the bus have caches, the
SDONE and the SBO# input pins on any PCI memory targets should be tied high.  This instructs the
memory target to reply to any memory accesses within its assigned memory address range. If the PCI
master has a cache, it would control the SDONE and SBO# lines to the memory targets.  If a PCI memory
target is designated as non-cacheable, it can tie SDONE and SBO# high or it can just ignore them.

PCI Bridge With Write Through Cache

A write through cache controller always propagates all host processor memory writes through to memory.
This means that all lines contained in the cache are always the same as their respective lines in memory.
By definition, all snoops result in clean snoops. The cache must be given the opportunity all memory
writes performed by PCI masters so that it can invalidate a line when it determines that a master is
changing data within that memory line. In addition, the bridge must initiate an invalidate cycle on the
host bus so that the host processors internal L1 cache can snoop the write to determine whether to
invalidate the L1 copy of the cache line. The bridge can ignore all memory reads because there is no
danger of reading stale information.

When the bridge incorporates a write through cache, the bridge need only implement SDONE. SBO# may
be tied high. This gives the bridge the ability to signal a STANDBY or CLEAN SNOOP to the currently
addressed PCI memory target. Each time SDONE is asserted, a cacheable memory target can permit a
memory transaction to complete. It is recommended that cache targets implement both SDONE and SBO#
so that they can support operation in both write through and write back environments.

PCI Bridge Incorporates Write Back Cache

All PCI memory targets should connect to both SDONE and SBO#.

Burst Transfer Crossing Line Boundaries

When a PCI master initiates a burst transfer, the master drives the start address on to the AD bus during
the address phase of the multiple data phase transaction. The cache latches this start address and snoops
it. As the burst progresses the memory target must monitor the address of the currently addressed
doubleword in order to determine if the burst transfer crosses over a cache line boundary. This is
necessary because the master is not outputting the addresses onto the AD bus for each data item
transferred and the cache must receive the next cache line address in order to snoop it.

To determine when the burst is crossing over the line address boundary, the memory agent must know the
cache line size. This information would either be hard wired or programmed (preferred) into the PCI
memory targets cache line size configuration register. If the transfer crosses the boundary, the memory
target must issue either a disconnect or retry to the master. This forces the master to end the current
transfer, re-arbitrate for the bus and then re-initiate the transfer, specifying the start address of the next
line as the start address of the next transaction. This allows cache to then latch and snoop the new
address.
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Snoop Results

SDONE SBO# Description

0 X Standby: Snoop results pending. Informs
the addressed memory target that the
bridge is snooping the transaction. Upon
decoding its address, the memory target
claims the transaction by asserting
DEVSEL#, but it inserts wait states until
the bridge indicates either a clean snoop,
or a hit on a modified line.

1 1 Clean snoop: OK to proceed with data
transfer. The bridge has determined that
no intervention if necessary (i.e. the line
has not been modified) and the
transaction may proceed. In response, the
memory target accepts the data from the
(on a memory write) or supplies the data
to the bus master (on a memory read).

1 0 Hit on a Modified Line: Issue a retry to
the master. The addressed PCI memory
target issues a retry to the master,
causing it to abort the transaction with no
data transferred. The cache writes the
modified line into the PCI memory,
invalidates the line (on snoop of write) or
marks the line clean (on snoop of read),
and then permits the master to retry the
memory access to the line in memory.


